Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available January 1, 2027
- 
            Free, publicly-accessible full text available November 1, 2026
- 
            Free, publicly-accessible full text available December 1, 2026
- 
            Free, publicly-accessible full text available July 31, 2026
- 
            As conventional electronic materials approach their physical limits, the application of ultrafast optical fields to access transient states of matter cap- tures imagination. The inversion symmetry governs the optical parity selection rule, differentiating between accessible and inaccessible states of matter. To circumvent parity-forbidden transitions, the common practice is to break the inversion symmetry by material design or external fields. Here we report how the application of femtosecond ultraviolet pulses can energize a parity-forbidden dark exciton state in black phosphorus while maintaining its intrinsic material symmetry. Unlike its conventional bandgap absorption in visible-to-infrared, femtosecond ultraviolet excitation turns on efficient Coulomb scattering, promoting carrier multiplication and electronic heating to ~3000 K, and consequently populating its parity-forbidden states. Interfero- metric time- and angle-resolved two-photon photoemission spectroscopy reveals dark exciton dynamics of black phosphorus on ~100 fs time scale and its anisotropic wavefunctions in energy-momentum space, illuminating its potential applications in optoelectronics and photochemistry under ultraviolet optical excitation.more » « lessFree, publicly-accessible full text available December 1, 2026
- 
            Free, publicly-accessible full text available July 21, 2026
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            Free, publicly-accessible full text available December 1, 2026
- 
            Global Lake Evaporation Estimates by Integrating Penman Method with Equilibrium Temperature ApproachAbstract Modeling evaporationEfrom inland water bodies is challenging largely due to the uncertainties of input data, particularly surface water temperature that plays a key role in the available energy, i.e., net radiationRnminus rate of water heat storage changeG. The equilibrium temperature approach (ETA) for estimating water surface temperature offers an alternative method to calculateRnandGusing standard meteorological data. This study evaluates the global lakeEestimates from the widely used Penman model (PM) coupled with the ETA (PM-ETA) against field observations and model simulations from the Lake, Ice, Snow, and Sediment Simulator (LISSS). Our analysis reveals that the PM-ETA tends to overestimateEby approximately 36% and 24% compared to observations and the LISSS simulations, respectively, despite being driven by the same input data. The biases of the PM-ETAEare more pronounced in the cold and polar regions with distinct seasonality ofRnandG. Furthermore, theEtrends from the PM-ETA deviate from the LISSS simulations over the period of 2001–16 due to the bias trends in the available energy. By incorporating the LISSS-simulatedRnandGinto the PM, the bias inEis reduced to less than ±5% compared to the LISSS results. This study highlights the need to improve the available energy input of the PM to improve the estimates of global lakeEfor better water resource management and planning. Significance StatementThis study addresses a crucial challenge in modeling evaporationEfrom inland water bodies—uncertainties in surface water temperature and available energy inputs, particularly net radiationRnand rate of heat storage changeG. By evaluating the widely used Penman model (PM) coupled with the equilibrium temperature approach (ETA), we reveal a tendency for the PM-ETA to overestimateEglobally, with the largest biases observed in cold and polar regions. Incorporating higher-qualityRnandGestimates from the Lake, Ice, Snow, and Sediment Simulator (LISSS) significantly reduces these biases. These findings highlight the importance of alternative higher-quality data products for available energy inputs for improvingEestimates by the PM.more » « lessFree, publicly-accessible full text available September 15, 2026
- 
            Free, publicly-accessible full text available September 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
